Pick a Course

## Experts tips to draw Signal Flow Graph for GATE without mistakes Signal flow graph is an important topic from gate point of view. One or two question is always expected from this topic. Experts at GATE - Prepladder has  devised tips to draw Signal Flow Graph without mistakes.

### Signal Flow Graph

Signal flow graph of the control system is a directed graph in which nodes represent system variables and edges represent functional associations between the pair of nodes. The Signal flow graph is derived from the simplification of the block diagram of the control system.

By means of aa signal flow graph, the equation y = Kx  can be represented as Here x denotes the input variable node, y denotes the output variable node and a denotes the transmittance of the edge connecting the two nodes.

FREE Daily Quiz on Electronics for
GATE-2017 Preparation

FREE Daily Quiz on Electronics for GATE-2017 Preparation.
Start Quiz

### Simple Procedure For calculating Transfer function from Signal Flow Graph

• Firstly, you need to calculate the input signal at each node of the graph.
• After calculation of the input signal at all the nodes, we will get a large number of equations relating node variables and transmittance. We will get the equation for each of the input variable node.
• Solving these equations will give us the ultimate input and output of the entire signal flow graph of the control system
• Lastly, for calculating the expiration of transfer function of the signal flow graph, we divide the inspiration of ultimate output with the expression of initial input.

### Mason's Gain Formula

Mason’s Gain Formula gives the overall transmittance or gain of a signal flow graph of the control system.

As per the Mason’s gain formula, The overall transmittance is given by FREE Daily Quiz on Electronics for
GATE-2017 Preparation

FREE Daily Quiz on Electronics for GATE-2017 Preparation.
Start Quiz

Solved Examples from GATE

Q1.  For the signal flow graph shown below, calculate the value of must read : Every Detail about syllabus of GATE ECE 2017

Solution:   We have to calculate C(s)/R(s) which is the transfer function.

This will be calculated using the Mason’s Gain formula

T = yout/yin where T denotes the Transfer function ∆ = 1 – Ʃ Li + Ʃ Li Lj – Ʃ Li Lj Lk +..............+ (-1)m Ʃ.........+............

Where

∆ = determinant of the graph

yin = input node variable

yout= output node variable

T = complete gain between yin and yout

K = Total number of forward paths between yin and yout

Pk= path gain of the kth forward path between yin and yout

Li = loop gain of each closed loop in the system

Li Lj = product of the loop gains of any two non-touching loops (non-common nodes)

Li Lj Lk = product of the loop gains of any three pairwise non-touching loops

k = the cofactor value of ∆ for the kth forward path, with the loops touching the kth forward path removed

Since the graph consist of only one forward path,  so k = 1

Therefore, T = P1.∆1/∆  ...................  (1)

Now,

∆ = 1 – (L1 + L2 +L3) + (L1 L2) – 0

Since there are no 3 non-touching loops

L1 = - G1 G2 H1

L2 = - G3 G4 H2

L3 = - G2 G3 H3

L1 L2 = G1 G2 G3 G4 H1 H2

So, ∆ = 1+ G1 G2 H1 + G3 G4 H2 + G2 G3 H3 + G1 G2 G3 G4 H1 H2

P1 = G1 G2 G3 G4

1 = 1 – 0 = 1

Therefore, substituting the values  in the equation (1)

We arrive at the correct answer as (B)

Best Wishes !!